Heparin cofactor II is regulated allosterically and not primarily by template effects. Studies with mutant thrombins and glycosaminoglycans.

نویسندگان

  • J P Sheehan
  • D M Tollefsen
  • J E Sadler
چکیده

Besides its critical role in hemostasis, the serine protease thrombin also participates in wound healing, inflammation, and atherosclerosis. Thrombin is inhibited by the serpins antithrombin and heparin cofactor II (HCiI) in reactions that are accelerated markedly by specific glycosaminoglycans. Following vascular injury, thrombin must be inhibited at both intravascular and extravascular sites that impose different constraints on the recognition of thrombin by these inhibitors. The present study examines the role of anion-binding exosite II of thrombin in the interaction with glycosaminoglycans and HCII. Acceleration of thrombin inhibition by serpins in the presence of glycosaminoglycans is proposed to occur by a template mechanism, in which inhibitor and protease bind simultaneously to the same glycosaminoglycan chain, facilitating their interaction. According to the template model, disruption of protease binding to glycosaminoglycan should significantly reduce acceleration of the inhibition. Specific mutations in exosite II (R89E, R245E, K248E, and K252E) disrupted thrombin binding to both dermatan sulfate and heparin, indicating that both glycosaminoglycans bind to a common site in exosite II. The same mutations markedly decreased the rate constant for thrombin inhibition by antithrombin-heparin (up to 100-fold) but had little effect on the rate constant for thrombin inhibition by HCII-heparin (7-fold maximal reduction) and no effect on the rate constant for thrombin inhibition by HCII-dermatan sulfate. These results are incompatible with a template model for thrombin inhibition by HCII and dermatan sulfate. In the presence of glycosaminoglycan, HCII and antithrombin interact with opposing thrombin exosites and use distinct mechanisms of glycosaminoglycan catalysis. Antithrombin employs a template mechanism that requires heparin to interact with thrombin exosite II, whereas HCII employs an allosteric mechanism that requires thrombin exosite I but is largely independent of exosite II. These findings have potential implications for glycosaminoglycan therapy and for the respective physiologic roles of HCII and antithrombin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutagenesis of thrombin selectively modulates inhibition by serpins heparin cofactor II and antithrombin III. Interaction with the anion-binding exosite determines heparin cofactor II specificity.

Thrombin is a multifunctional serine protease that plays a critical role in hemostasis. Thrombin is inhibited by the serpins antithrombin III and heparin cofactor II in a reaction that is dramatically accelerated by glycosaminoglycans. The structural basis of the interaction with these inhibitors was investigated by introducing single amino acid substitutions into the anion-binding exosite (R68...

متن کامل

Inhibition of dysthrombins Quick I and II by heparin cofactor II and antithrombin.

Heparin cofactor II and antithrombin are plasma serine proteinase inhibitors whose ability to inhibit alpha-thrombin is accelerated by glycosaminoglycans. Dysfunctional thrombin mutants Quick I (Arg67-->Cys) and Quick II (Gly226-->Val) were used to further compare heparin cofactor II and antithrombin interactions. Quick I, Quick II, and alpha-thrombin were eluted at the same salt concentration ...

متن کامل

Molecular mapping of the heparin-binding exosite of thrombin.

Thrombin contains electropositive patches at opposite poles of the molecule which represent potential exosites for the binding of macromolecular ligands. The function of anion-binding exosite I, the fibrin(ogen) recognition site, has been well described. Anion-binding exosite II, located near the carboxyl terminus of the molecule, has been proposed to bind heparin on the basis of chemical modif...

متن کامل

Selective cleavage and anticoagulant activity of a sulfated fucan: stereospecific removal of a 2-sulfate ester from the polysaccharide by mild acid hydrolysis, preparation of oligosaccharides, and heparin cofactor II-dependent anticoagulant activity.

A linear sulfated fucan with a regular repeating sequence of [3)-alpha-L-Fucp-(2SO4)-(1-->3)-alpha-L-Fucp-(4SO4)-(1-->3)-alpha-L-Fucp-(2,4SO4)-(1-->3)-alpha-L-Fucp-(2SO4)-(1-->]n is an anticoagulant polysaccharide mainly due to thrombin inhibition mediated by heparin cofactor II. No specific enzymatic or chemical method is available for the preparation of tailored oligosaccharides from sulfated...

متن کامل

Heparin cofactor II thrombin complex as a biomarker for mucopolysaccharidosis: Indian experience.

BACKGROUND Serum heparin cofactor II-thrombin complex (HCII-T) is an emerging biomarker for mucopolysaccharidosis disease (MPS I and MPS II). METHODS Seventeen cases (6 MPS I and 11 MPS II) and sixty healthy controls were enrolled in study, conducted from September 2008 to December 2012. The mean ± SD age of MPS1 (n=6, 5 males) and MPS II was 7.02 ± 3.25 and 5.2 ± 2.15 years, respectively. Di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 269 52  شماره 

صفحات  -

تاریخ انتشار 1994